Ursula Taylor

C of E School

Calculation Policy

This booklet has been produced in affiliation with Lincroft Middle School, working in partnership with 19 schools in the North Bedfordshire Schools Trust.

Mathematics Calculation Policy

Introduction and Aims

This booklet has been produced in line with the programmes of study taken from the revised National Curriculum for Mathematics 2014.

Children, where appropriate, will use mental methods as their first port of call, however for calculations that they cannot do in their heads, they will need to use an efficient written method accurately and with confidence. This booklet outlines how to tackle and record mathematical calculations in all four operations ($+-x \div$) in addition to our approach when working with fractions.

The methods are not set with age related expectations; rather it is a guide to the progression of approaches and methods that the children will be introduced to in school from Early Years through to Upper Key Stage 2 (Year 6).

It is hoped that this booklet will allow transparency and the creation of a reliable, efficient and consistent approach to calculations at Ursula Taylor C of E School.

- When the previous methods are secure children may wish to record in one of the ways below as opposed to the number line.

Partitioning (both numbers)
$36+45=30+40+6+5$

$$
\begin{array}{rlr}
\frac{\text { Partition (one number) }}{36+45}=36+40+5 & \\
& =76+5 & \begin{aligned}
& \text { Rounding and adjusting } \\
&=81
\end{aligned} \\
\begin{array}{rlr}
36+45 & =36+50-5 \\
& =86-5 \\
& =81
\end{array}
\end{array}
$$

- Vertical column addition - adding the most significant digits first.

- This makes it possible to record the vertical method more quickly by making a note of multiples of 10 or 100 rather than writing it all out.

(This method would not normally be used before Year 5, and even then there is no hurry to move to this.)

Pupils can then use either the expanded or compact method with larger numbers or decimals.

3968
$+\quad 5493$ 8000
53.2

1300
$+\quad 4.9$ 150

11
9461
$\frac{58.1}{1}$
28.53

+ 9.7
$+5.32$
43.55

Please note:

- Use of any method is appropriate depending on the type of calculation.
- Practise choosing the most appropriate method for a variety of calculations.
- Apply methods learnt and use confidently in a range of situations

Subtraction

The number line method may be developed into a vertical method by finding what to add to make the next multiple of $1,10,100$ etc.

So 434-168=266
Initially the number line and the
vertical method will be recorded $\frac{168}{2}$ (170)
30 (200)
$\frac{234}{266}(434)$

Other examples

Money

Toby wants to buy a CD costing £8.95, he has already saved up $£ 4.28$ towards the cost. How much more money does he need to buy the CD?

Decimals

At sports day one year, Helen completed her race in 12.24 seconds. Her older brother ran the race 8.7 seconds faster than she did. What was his time?

The distance from Riseley to Bedford is 12.2 km and Riseley to Ampthill is 18.3 km . How far is it from Bedford to Ampthill?

Time

James arrived at the train station at 13:35 and his train left at 14:22. How long did he wait at the station for?

Please note:

- Use of any method is appropriate depending on the type of calculation.
- Practise choosing the most appropriate method for a variety of calculations.
- Apply methods learnt and use confidently in a range of situations
- Making equal groups of objects - How many altogether?

Vocabulary

- Repeated Addition - three groups of 2
- Lots of 2's 5's 10's
- Add another group
- Drawing objects in groups.
- Match numerals to groups of objects.
times groups of multiply product
- Record numbers, possibly in a horizontal sentence along with drawings
- Use \times sign to indicate groups of
- Draw arrays (arrangements of dots/marks)
- Write related horizontal calculations. lots of multiplied by sets of multiple of once twice

$$
2 \times 8=16
$$

$$
\binom{16 \div 2=8}{16 \div 8=2}
$$

- Regular times table practice begins.
- Make the connection with the inverse and matching division facts
- Use a number line or hundred square to count on in groups of a number.
- Record the horizontal number sentence to go with it.
- Use a number line to jump forward in groups and record the horizontal number sentence to go with it.

(I count on in groups of $8 /$ lots of 8) (I count on in groups of $2 /$ lots of 2)
- Write horizontal number sentences and use partitioning

$$
\begin{aligned}
8 \times 23 & =8 \times 10+8 \times 10+8 \times 3 \\
& =80+80+24 \\
& =184
\end{aligned}
$$

- This develops into the grid method

X	10	10	3	
8	80	80	24	$=184$

leading to

X	20	3	
8	160	24	$=184$

The grid method can then be used for 2-digit by 2-digit multiplication. $66 \times 34=$

\times	60	6	or	X	60	6	
30	1800	180		30	1800	180	$=1980$
4	240	24	$=2244$	4	240	24	$=264$
	$=2040$	$=204$					$=2244$

This is extended to larger numbers
2035×17

x	2000	30	5
10	20000	300	50
7	14000	210	35
	$=34000$	$=510$	$=85$

For multiplication with decimals equivalent calculations can be used

3.4×0.68 (consider 34×68 as a similar calculation)

Adjust numbers involved by multiples of 10 or 100 to create an integer sum

34

Pupils who have firmly grasped the above methods in understanding may be able to move on to the potentially quicker method (dubbed 'the formal' method by the Department for Education) shown below:
$66 \times 34=$
From this:

x	60	6	
30	1800	180	$=1980$
4	240	24	$=264$
66		$=2244$	
34			

To this:

$\times \quad 34$
1980
264
2244

2244

To begin with, the grid may be set out side by side with this method to demonstrate that they are linked.

Please note:

- Use any appropriate method above depending on the type and context of calculation.
- In problem solving situations, practise choosing the most appropriate method for a variety of calculations.
- Apply methods learnt and use confidently in a range of situations
- Ensure ongoing consolidation of times tables and related division facts
- Work towards instant recall of $2,5,10,3,4,6,7,8,9$ times tables (usually in that order)

Division

- Sharing objects into equal groups	
- Repeated subtraction/addition	
- Discussion and practical activities	divide divided by divided into
- Drawing objects and splitting into groups	
- Match numerals to groups	how many each
- Write a horizontal sentence along with drawings of groups of objects	
- Use \div sign to indicate sharing/grouping	share
- Draw arrays (arrangements of dots/marks) - Write related horizontal calculations. $\begin{aligned} & * * * * * * * * \\ & * * * * * * * * \\ & 16 \div 2=8 \end{aligned} \quad\binom{2 \times 8=16}{8 \times 2=16}$	left left over group equally goes into remainder
- Regular times table practice begins.	remainder divisible
- Make the connection with the inverse and matching multiplication facts.	factor quotient inverse
- Use a number line to jump forward in groups from 0 to the number being divided into and record the horizontal number sentence to go with it (without	
remainders) (I start at zero and count in 8 s until I get to 16) (I start at zero and count in 2 's until I get to 16)	[00
Use a number line to jump forward in groups from 0 to the number being divided into and record the horizontal number sentence to go with it. (with remainders)	颜
$33 \div 9$ $\text { So } 33 \div 9=3$	-
This method can also be used with larger numbers	

Place value understanding is needed to count on in multiples of the divisor.
For many pupils, the addition of an 'I Know' box can be very beneficial

A tabular way of recording multiples of the divisor can be used
$874 \div 7$

$7 \times$	Running Total
$\times 100=700$	700
$\times 20=140$	840
$\times 4=28$	868
$\times 124$	$+6=874$

I Know
$7 \times 1=7$
$7 \times 2=14$
so \quad so $7 \times 10=70$
$7 \times 3=21$
$7 \times 4=28$
so
$7 \times 30=210$
so $7 \times 40=280$

So $874 \div 7=124$ r 4

The remainder can be written as a fraction (simplifying fractions where possible and then using equivalent decimals)

$$
674 \div 6=112 r 2=112 \frac{2}{6}=112 \frac{1}{3}
$$

$3786 \div 4=946 r 2=946 \frac{2}{4}=946 \frac{1}{2}=946.5$
Following changes to the national curriculum in 2015, pupils are now expected to use 'the formal methods' of division in some parts of their Key Stage 2 tests. These formal methods are more commonly known as 'the bus stop methods'. Pupils may be moved on to these if they have shown a level of competence and rooted understanding in the division methods shown above: $184 \div 8=$

$$
\begin{array}{rr}
23 \\
8 \longdiv { 1 8 4 } & \text { or later: } \\
-\frac{16}{24} \\
-\frac{24}{0} & \\
-184 \\
24
\end{array}
$$

Another example of a more difficult calculation using this method would be: $2331 \div 37=$

Start with $233 \div 37$, since 37 does not go into 2 or 23 .

37 | 63 |
| ---: |
| -2331 |
| -2221 |
| $-\quad 111$ |
| $-\quad 111$ |
| 0 |

The nearest multiple of 37 to 233 is: $37 \times 6=\underline{222}$

The remainder is: 233-222 = 11

Now, $111 \div 37=3$

Therefore $2331 \div 37=63$

This algorithmic method does nothing to advance pupils' understanding of division or place value. It should, therefore, only be used as a time-saving mechanism once the child's understanding of the other methods in this booklet is undoubtedly strong. This will happen at different times for different children.

Please note:

- Use of any method is appropriate depending on the type of calculation.
- Practise choosing the most appropriate method for a variety of calculations.
- Apply methods learnt and use confidently in a range of situations
- Ongoing consolidation of times tables and related division facts
- Instant recall of $2,5,10,3,4,6,7,8,9$ times tables (usually in that order)

Fractions

Fractions

Pictures and written fractions
 Here are four different ways of expressing/explaining a fraction

It is important that students recognise these different representations to help them solve problems.

Numerator and Denominator

Fraction Wall to show equivalence
A fraction wall is often shown to help students understand equivalent fractions and to compare the size of two fractions

Be prepared to be flexible about fraction, decimal fraction and percentage equivalence.
Mixed numbers/top heavy/improper/Proper

11 Is an improper fraction because $\overline{4}$ the numerator is bigger than the denominator Sometimes we call this a top-heavy fraction

3 Is a proper fraction because the $\overline{4}$ numerator is smaller than the denominator

8 quarters
3 quarters
 $2 \frac{3}{4}$ $2 \frac{1}{4}$

3This is a mixed number with a whole number
$11_{\text {This is an improper/Top Heavy Fraction }}$

Vocabulary
Proper
Improper
Top Heavy
Mixed
Numerator
Denominator
Equivalent
Common Denominator

Simplify
Integer
Whole
Number
Factors
Multiples
Simplify
Fully
Cancelling
Divide
Regular times table practice (with associated division

Finding Equivalent Fractions

It is difficult to compare fractions unless they are alike and have a common denominator. This
is a common multiple of all the denominators and is often the lowest common multiple (LCM).
Proper

Improper
Top Heavy
Mixed
Numerator

Denominator
Equivalent
The same amount can be represented by different fractions.

Using diagrammatic representation and splitting into different sized pieces.

9 out of 12 parts are shaded or you could say
3 out of 4 rows are shaded

$\frac{3}{4}$

Pictures are used to reinforce proportionality. The same amount of the circle is shaded - but we can represent this with different fractions.

Simplifying (inverse of equivalence)

Fractions can be simplified by looking for common factors and dividing by these numbers. It is possible to take different steps depending on which numbers we chose to divide with.

\leftarrow No more common factors for 3 and 5 so we cannot simplify any further

This example has been simplified in one step \rightarrow because the largest common factor of 32 and 80 was found to divide by (16 is a factor of both).
The number of steps does not matter - it only speeds up the simplifying process.

Common Denominator

Simplify
Integer
Whole
Number
Factors
Multiples
Simplify
Fully
Cancelling
Divide

Regular times table practice (with associated division facts)

Ordering / Comparison

Initially a Fraction Wall can be used to compare size

Then equivalent fractions can be found to compare directly

It is then much easier to compare the fractions as
they all have the same denominator.

Fractions of an amount

$$
\begin{aligned}
& \frac{4}{5} \text { of } 80 \begin{array}{|c|c|c|c|c|}
\hline \frac{16}{16} & 16 & 16 & 16 & 16 \\
32 & 48 & 64 \\
\frac{1}{5}
\end{array} \\
& \\
& \text { so } 80=80 \div 5=16 \\
&
\end{aligned}
$$

Shade in 3 out of every 4 boxes $\frac{3}{4}$ of 16 is 12

Vocabulary
Proper
Improper
Top Heavy
Mixed
Numerator
Denominator
Equivalent
Common
Denominator
Simplify
Integer
Whole
Number
Factors
Multiples
Simplify Fully

Cancelling
Divide
Regular times table practice (with associated division facts)

Adding Fractions

1) Diagrams with common denominators
$\frac{1}{5}$

1 fifth

+3 fifth

$=4$ fifths

2) Diagrams to show conversion to equivelant fractions with common denominators

Then

$$
\frac{1}{6}+\frac{4}{6}=\frac{5}{6}
$$

3) Finding common denominators

$$
\frac{3}{7}+\frac{2}{5} \quad \begin{gathered}
\text { Equivalent fractions with a common } \\
\text { denominator can be found in order to be able } \\
\text { to add the fractions together. }
\end{gathered}
$$

This calculation

$$
\frac{14}{35}+\frac{15}{35}=\frac{29}{35}
$$

If the answer is an improper fraction then it should be simplified as a mixed number.

Vocabulary

Proper
Improper
Top Heavy
Mixed
Numerator
Denominator
Equivalent
Common
Denominator
Simplify
Integer
Whole
Number
Factors
Multiples
Simplify
Fully
Cancelling
Divide

Multiplying Fractions
With diagrams

$$
\frac{1}{4} \times \frac{1}{2}
$$

"a quarter of a half"

$$
\frac{3}{7} \times \frac{2}{5}=\frac{6}{35}
$$

Vocabulary

Proper
Improper
Top Heavy
Mixed
Numerator
Denominator
Equivalent
Common
Denominator
Simplify
Integer
Whole
Number
Factors
Multiples
Simplify Fully

Cancelling
Divide

With mixed numbers
Remember ... $2 \frac{2}{5}=\square \frac{12}{5}$

$$
\begin{aligned}
& 2 \frac{2}{5} \times 3 \frac{4}{7} \\
= & \frac{12}{5} \times \frac{25}{7}<\begin{array}{l}
\text { Convert first to } \\
\text { avoid } 2 \times 3+\frac{2}{3} \times \frac{4}{7} \\
\text { only }
\end{array} \\
= & \frac{3 \times 4 \times 5 \times 5}{5 \times 7}=\frac{12 \times 5}{7}=\frac{60}{7}=8 \frac{4}{7}
\end{aligned}
$$

